A study to determine the effectiveness of computer assisted instruction in the basic mathematics high school curriculum

Karen S. Osborne
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd
Part of the Science and Mathematics Education Commons

Recommended Citation

Osborne, Karen S., "A study to determine the effectiveness of computer assisted instruction in the basic mathematics high school curriculum" (1997). Theses and Dissertations. 2097.
https://rdw.rowan.edu/etd/2097

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact graduateresearch@rowan.edu.

A STUDY TO DETERNDE THE EFFECTIVENESS OF COMPUTER ASSISTED INSTRUCTION DN THE BASIC MATHEMATICS HIGH SCHOOL CURRICLIUM

by
Karen S Oshorne

A Thesis
Submitted in partial filfillment the requirements of the Master of Arts Degree in the Graduate Division of Rowan University in Mathematics Education

May, 1997

Approved by \qquad

Abstract

Karen S. Osbone, A Study to Determine the Effectiveness of Computer Assisted Instruction in the Basic Mathematics High School Curiculum

The purpose of this study was to investigate the effectiveness of computer assisted instruction in the basic mathematics high school curriculum.

A 31 day study took place using a popilation of 25, 9th grade basio mathematice students from Washington Township High School. These 25 students were split into two samples. The two samples tested were a control group consisting of 12 students who received the traditional lecture-oriented instruction, with assign-study-recite a common procedure and innovation and experimentetion minimal. The experimental group consisted of 13 students who received the traditional lecture oriented instruction along with CAI. Each sample was given a pre-test and a post-test to determine if CAI along with the traditional method was more effective than the traditional method of instruction.

It pas determined that there was no significant difference in the students who received CAi to those who received the traditional method of instrantion.

MANI-ABSTRACT

Karen S. Osbome A Study to Determine the Eflectiveness of Computer Assisted Instruction in the Basic Mathernatics High School Curriculum

The purpose of this study was to investigate the effectiveness of computer nssisted instruction in the basic mathernaties high schnol curricuiurn. The results indicated that there is no signdicant dilference in the studetrs who received CAI to those who recerved the traditional nethod of imetruction.

TABLE OF CONTENTS

Chapter 1 - Introduction to the Study 1
Chapter 2 - Review of Related Literature 4
Chapter 3 -Procedures 10
Chapter 4 - Analysis of Data 14
Chapter 5 - Summary, Conclusions, and Recommendations 18
Appendices 20
Endnotes 43
Bibliography 45

ACKNOWLEDGMENTS

The researcher is pleased to ackrowledge her indebtedness to Dr. Sooy for his dedication, guidance, and expertise. Apprectation is also extended to Eileen Rosell, Business teacher fom Washington Township High School who typed this thesis; and nry colleagues in the Mathematios Department at Washington Township High School for their support

In addition, I would like to thank my parents Signe and George and fancee Glem for their contimued support and encouragement.

CHAPTER 1

Introduction to the Study

Background

Research shows that once computers have been introduced into the classroom in a meaningfial way, both student understanding and time-on-task increase. ${ }^{1}$ In order for today's students to benefit from computer technology, computer learning must begin to play a valuable role. Computers allow students to work at their desired pace and provide teachers the opportunity to work directly with slower leamers. In classrooms where computers are integrated into the curriculum, the teacher assumes the role of a facilitator of learnitg rather than the sole source of knowledge.

Statement of the Problem

It is the purpose of this study to investigate the effectiveness of computer assisted instruction in the basic mathematics high school curriculum.

Significance of the Problem

The National Council of Teachers of Mathematics as well as other researchers studying the area of school reform, insist that computer assisted inscruction is a key to improving the productivity of the nations schools. ${ }^{2}$ This study will help determine if computer assisted instruction will improve learning in the basic mathematics curriculum. The outcome will benefit school districts who are tryitg to address the skills of the basic mathematics student.

Limitation of the Study

This study will be taking place at Washington Township High School, located in Sewell, New Jersey. Washington Township High School is the largest high school in Gloucester County; the total student enrollment (ninth grade through twelfth grade) is approximately 2,700 students. The township is a culturally diverse, middle to upper middle class community, comprised of people who are employed as executive, professional, trade members and technical experts.

The sample snudent size will be 25 , 9 th grade basic mathematics students. These 25 students will be placed into two samples in which the conarol group consist of 12 students and the experimental group consists of 13 students.

Imasual Terms:

EWT - Early Warning Test This test is administered in the state of New Jersey to 8th grade stadents in the areas of Mathematics, Reading, and Writing

HSPT(1)-High School Pofofiency Test. This test is administered in the sthte of New Jersey to 11 th grade stadents in the areas of Mathematios. Reading, and Whiting. Successfil completion of this test is a requirement for high setool graduation.

Basic Sth Grade Mathonatios Studente - Students who failed the EWT in 8th grede in the area of mathematios are placed into this course as a 9th grade studeat. At Washington Township High School the course is tided HSPT9. The five cluster areas of the HSPT math exam must be covered in this couse. The cluster areas are as follows:

1. Numerical Operations

FII Messurement and Geometry
III. Patterns ado Functions
IV. Data Analysis
V. Fundamentals of Algebra

CAI - Computer assisted instruction
PSI - Personalized system of instruction.
Assumption
An assurption is that the EWT and HSPT11 tests are appropriate indicators of a students" mathematical basic skills competency.

Erocedures

The research will be conducted by working with a population of 25 , 9 th grade basic mathematics students from Washington Township High School. These 25 students will be split into two samples.

The two samples being tested, are a control group and an experimental group, The control group consists of 12 students who receive the traditional, lecture-oriented instruction, with assign-study-recite a common procedure and innovation and experimentation minimal. The experimental group consists of 12 students who receive the traditionse lectue oriented instruction aloug with computer assisted instnuction.

Farh sample will be tested to determine if CAl along with the traditional method is more eflective than traditional method of instruction.

CHAFTER 2
 Review of Related Literature
 Introduction

The purpose of this study was to investigate the effectiveness of computer assisted instruction in the basic mathematics high school curicuram. The related research examines this through such materials as the National Courcil of Teachers of Mathematics (NCTM), NCTM's - Standards, National Education Association literature and other celevant articles

Review of Refated Litemature

Teachers need to be "as comfortable with computers as with chalkooards," declared President Clinton at a recent White House proysam. ${ }^{3}$ The need for tekchers to use and help their students use technology is addressed by the NeTM's professonal teaching standards.

Standard 4.5: All students will regrilarly and routinely use calculators, computers, manipulatives, and other mathematical tools to enhance mathematical thinking, understanding, and power. ${ }^{4}$

NCTM has been a leader in encouraging mathematies teachers to incotporate technology into their lessons. The Coucil has adopted formal positions encouraging the use of computers in mathematics classromins.

In more classrooms today computer technology is opening up new ways for teaching mathematics. In addition, with the growing awailability of the Trtemet in the classroom, students can search for mathenatic resourses. The use of computers as a tool in mathematics is essential to moving the current classroom into the 21 st century.

James Denzell, Jr., General Mamager of IBM Educational Systems, states that the issue today's teachers are tackling is interest and motivation. ${ }^{5}$ The question he presents to today's edubators is, "I Iow do we make learning more exciting than

MTV ${ }^{+6}$ Technology stimulates students to navigate their way through those lessons taking entirely different paths.

Professon Elliot Soloway of the University of Michigan states that students learn by doing. "Construct knowledge; it used to be learning what, now it's leaming how. Knowledge delivery is the old way, the notion that students are vessels to be filled up with knowledge. Now students must construct their own nodels. The teacher builds a scaffolding of learning emvironment with rechnology. Then the students learns by doing." ${ }^{7}$

Current changes in the manner in which mathematics is being taught in many schools across the nation have triggered concerns by some parents that the new curriculum ignores the "fundamentals." 8 The concern expressed by the parents needs to be addressed by explaining today's methods and curriculum more thoroughly and effectively.

Parents need to be informed that computer assisted instruction in today's classroom is essential if we want our children to keep pace with their peers elsewhere in the world. The traditional method of instruction which focused on memonization and drills does not provide the comperitive edge that today's students need to enter a challenging world-wide marketplace.

The large growth of high-technology industries demands creative thinkers and team players. The mose valuable employees are those who are able to work together to make timely, educated guesses and then supply reasonable mathenatical principles to validate them. This means the students trained in the traditional classoom setting lacks the vital skills essential in today's job market

It is essential that math teachers incorporate basio skills with critical thinkitgs. With the assistance of computer instruction students are able to work on these higher order thinking skills.

In a society where most work is becomine computer based, school work Gumot resist the change. Computer technology and electronic networks have slowly been intluating the schools.' Siece the widesprend of gowth of such techolosy in both the howe and the workplace, computer equipment is undikely to end up in closets or even ro sit idle most of the time. For both students and teachers there is valid purpose for using this equipment, the technology represents the future.

Overall, the use of technology in schools has not kept pece with the changes that are occurring in today's society. We have seen how technology has daastically changed the way business is conducted, products are produced, and medical tesearch is analyzed, however, many elements within the schools have remained urchanged. As educators moving into the 21 st century can see electronic leanning is the firture

Teachers need to participate in the manner in which technolggy is used in the classroom. Electronic mail and word processors changed the way we view the world. The new advancement in computing are now doing the same thing. ${ }^{10}$ Educators need to be part of the team in order to guarantee that the use of technolegr in the schools is a successful asset.

Review of Relatef Reseach

In 1989, Henry Jay Becker conducted a study out of Johns Hopkins University discussing the use of computers in mathematies and science classrooms. The results of his study revealed that computer use in math and sdence classes were generally sporadis or episodic rather than systermatic and regular. When computers were used in math and science classes its role was more related to earichment or remedtation goals of the teacher than to higher prionity work that facuses on the regular instructional curriculum. ${ }^{11}$

The 1989 survey found that in middle and junior high math ofasses computers were used mainy for practicing whole number aritumetic, factions, and dexumals. Other uses of computers in math that appeared modestly fiequently in the sample
included the use of the Logo programming language to help students make geometric constructions and programs to help students to understand algebraic concepts. ${ }^{12}$

The research revealed that students in a class with classroom located computers were more likely to use them regularly throughout the school year than students in a class that must be scheduled into a lab. It was also found in the area of mathematics, intensive use of computers occurred more frequently in the laboratory setting where there were more computers because once a class had developed the routine of using computers, having enough of them for all students was more critical than the convenience of their location.

According to the survey responses, math and science teachers had two major purposes for using computers, (1) motivating students interest in the subject and (2) helping students to master basic facts and skills. Teachers' goals were partly a function of the conditions under which they used computers, the anount of computers available and whether they were available to be used in teachers' own classrooms of in a shared computer laboratory. It was found when teachers had only a few computers available they were used as a way of rewarding students for getting classwork covered and for remediating individuat student's deficiencies. In contrast, those wath teachers who had a large number of computers avalable to their class and to have computers in their own classroonn, reported that leanning to apply mathematics was the most important function that computers played in their classroom.

An international math study of eighth-grade achievement results which were published in the December 1996 issue of the NCTM's news bulletin is the most recent in a series of srudies. It presented one of the largest, most comprehensive pictures of international mathematies and science education taken to date. The eighth-grade achievement results are only a small piece of a larger picture which may reveal importans factors in academic achievement.
U.S. eighth-grade students scored slightly below average compared with their peers in 40 other countries who participated in this study. ${ }^{13}$ German and Japanese eighth graders who scored at the top were found to be studying more quality mathematics, as opposed to quantity. Instructors in these countries often present students with a problem and ask the students to come up with their own solutions. Whereas the American mathematios curiculum features a greater number of topics at each level. This study helps to reveal how technology can be used to enhance leanning

In Tom Morgan's article, "Using Technology to Enhatice Learning: Changing the Chunks", ${ }^{14}$ he discusses how integrating technology into the arriculum is not an easy task. It requires knowledge of the subject area, an understanding of how students leam, and a level of technical expertise.

In order to enhance learning, computer assisted instruction raust be used ins a manner which will support the processes students use when they leam. When students learn new concepts, they incorporate them into existing chunks. ${ }^{15}$ The cognitive interpretation of chunk - building is based on hierarchical learnings, with broader concepts at the upper levels, and more detailed imformation at the lower levels of the chunk. An understanding of the ways chunks are formed can help educators evaluate the best way computer assisted instruction mighi be used to enhence the chunk-forming or learming process.

Computer assisted instruction can provide students with repeated exposures to variations of a concept. Teachers are currently using computers effectively for teaching factual knowledge by incorporating drill and practice progranos with school curriculums. Many of the programs engage students only at the lower level of Bloom's Taxonomy (Knowledge, Comprehension, Application). ${ }^{16}$ To be productive citizens in a rapidly changing technological society, students will need to bave strong critical thinking and problem-solving skills. Therefore, experiences that engage students at
lugher levels of Bloon's Taxonomy (Analysis, Synthesis, Evaluation) will need to be demonstrated. ${ }^{17}$

If is essential that in planring and evaluating instructional applications of computer assisted instruction teachers must first ensure that compuzers are being used to expose students to variations of the concepts being taught. Second, they need to ensure that the applications engage students at higher levels of Eloom's Taxonomy.

In November of 1996, the National Education Association printed an article dealing with critics to computers in the classroom who claim they are a distraction from the task at hand and are incredible overtyped. ${ }^{18}$ Members of the Maxwell Middle School in Tucson, Arizona disagree.

The Maxwell School is one of the few schools in America where "classroom" and "computing" now go together like the traditional blackboard and chalk. Maxwell currently hosts 600 students and 423 compuiers. Seventh and eighth grade classrooms each contain some 20 PC's.

The staff-driven curriculum is heavy on reading and writing, thematic instruction, and cooperative learning and the results are impressive. In the 1995-96 school year, Maxwell seventh graders of all abilities showed an impressive four-year boost in their lowa Test scores, averaging 8 percent gains in English, 10 percent in readinges and 12 percent in math.
"Conyuters help enhance what students learn in the classiocm be it reading, witing, math, and so on Ir enables them to see the bigger picture catickly, how it all fits together" notes seventh grade social studies teacher Brandon Fill ${ }^{19}$

The Maxwell Middle School is not a school filled with weal:hy stadents, in fact 83 percent of the stutente qualify for fre or reduced-price hundh. ${ }^{20}$ Therefore, if these students did not have computers in the classroom, they'd probably never touch a computer. Making sure all students receive this opportunity in all communities, is the challenge America now faces.

CHAPTER 3

Procedures

Introduction
While conducting my research into the effectiveness of computer assisted instruction in the basic mathematics high school curniculum, the majority of the research stated that computers when used effecively will enhauce the learning process. Therefore, I conducted my research using a popolation of 25 , 9th grads basic mathematios students from Washington Township High \$chool. These 25 students were split into two samples. The two samples tested, were a control group consisting of 12 students who received the traditional lecture-oriented instraction, with assign-study-recite a common procedure and movation and experimentation minimal. The experimental
group consisted of 13 students who received the traditional lecture oriented instruction along with CAI.

This study took place over a 31 school day period. Each stinple was given a pre-test and a post-test to determine if CAI along with the traditional method was more effective than traditional method of instruction.

Procedures

The pre-test which was administered to both groups before conducting the study, was a department mid-term exam. This mid-term exam was developed by five teachers in the math depariment at Washington Township Fligh School. The five teachers who developed the mid-tern exam also teach the course 型 which the exam was administered. The mid-term exam consisted of 45 multiple choice problems with 5 fill in questions. The basic mathematical material covered in the raid-term exam were: numerical operations, data analysis, measurements, and pre-algebra.

The post-test which was adnurnsered at the onohsion of 31 school day study was a department final exam. This final expm was developed by five teacher in the math department at Washington Township High School. The five teachers who developed the final exam also teach the course in which the exam was adminustered. The final exam consisted of 45 multiple choice problems and 5 fill questions. The basic mathematical material covered in the final exam were: numerical operations, data analysis, measwerwents and geomety, patterns and functions, and pre-algebra.

Procedures afthe Control Group

The control group which consisted of 12 students, received the traditional lecture-oriented instruction with assign-study-recite a common propedure and innovation and experimentation minimal. During the 31 school day period these srudents did not receive any change to the existing instructionat classroom procedures. They began each 45 minute class with a wam-up problem which onsisted of basic math problems to get the students focused in on the lesson to be covered in the class time. The wartu-up was presented on the board and students had to copy it dowin hat their notebook and solve, on the overhead and students had to copy it down it their notebook and solve, or a handout. The new material was covered using an overhead projector with transparencies of notes and probletns that studens were to copy into their notebooks. A few problems were assigned in class for the students to try becore thomework was assigned.

Procedures of the Experimedral Gromp
The experimental youp which consisted of 13 stadents, reseived the traditional lecture oriented instruction along with CAI. During the 31 school day period these students were moved into a math computer lab which consisted of 22 computers. These computers were networked with math computer software. The soltwate which the experimental group used was EWT (Early Waning Test - software for math students which presented math matedial found of the Sth grade Early

Waming Test), HSPT for Success (High School Proficiency Test - software for math students which presented math material found on the 1 1th grade High School Proficiency Test) and Algebra Blaster (Pre-Algebra and Algebra I Problems). The 45 minute class was conducted by assigning a student to a computer that they had to go to at different times during the class period. Some days I started class with a warm-up problem to get the class lesson started by using a computer software problem. These warm-up problems tended to be open-ended questions which were obtained through the HSPT For Success Program. (See Appendix, page). Students were asked to read the problem from the computer monitor and answer them on a worksheet. After students had time to work individually on the answer I asked students to tell me what answer they had obtained. We discussed this and then the students were told what key to press to obtain the answer the program had given. The software package allowed for the students to obtain a hint to the answer if they were confused. Other days I presented the warm-up on the board ther had the students go to their assigned computer and work on a section from the EWT software package or HSPT For Success software package. When working in those software packages I told the students what area they were to work on. For both packages the areas that were covered were: numerical operations, measurement and geometry, pattems and functions, data analysis, and fundamentals of geometry. When working in these areas students were presented with 10 multiple choice problems. I had students number their worksheet and show their work and choice of an answer. As they selected an answer to each multiple choice problem the conputer told them if their response was correct or incorect. If it was incorrect the program gave the correct answer and an explanation. At the completion of the 10 multiple choice problet:s the program provided the students score and the students were to record if each problem was correct or incorrect by placing a check mark next to the probiems that were incorrect. Students had to also record their total score out of ten problems at the top of the
worksheet. If students completed the assigned work before the resi of the class was completed, I had the student(s) work on the Algebra Blaster software package. This program contained pre-algebra and algebra problems. After students concluded the work on the computer their worksheet was placed in a folder which was kept in the classroom. The experimental group and the control group both received the same lesson. The new material was covered using an overhead projector with transparencies of notes and problems that the students were to copy into their notebooks. A few problems were assigned in class for the students to try before homework was assigned.

CHAPTER 4
 Analysis of the Deta

Introduction

The data obtained by a pre-test and post-test administered to 25 basic mathenatics students at Washington Township High School located in Sewell, New Jersey is described in this chapter. The intent of the tests were to determine the effectiveness of computer assisted instruction in the basic mathematics curriculum.

Data amalysis was performed and a t-test was administered to determine significance. The summary is reported in namative and table form.

Bexults of the Tests

Table 1 shows a comparison of pre-test seores of the control group and the expermental group. There were 25 , 9th gade basis mathematics students th the study. The control group consisted of 12 students and the experimental group consisted of 13 students. The mean score for the control group after taking the pretest was 39. The mean score for the experimental group after taking the pre-test was 36.6. A two-tail t-test was administered and a t-score of -89 was obtained. This was not signiffeant at the .05 level.

TABLE I
A Comparison of the Pre-Test Scores of the Control Group and the Experimemal Groly

MEAN
PRE-TEST S.D.
SCORE

Control Group	39	7.3978
$(\mathrm{n}=12)$		

Experimental Group 366 6.1446 ($\mathrm{n}=13$)
t -score $=-.89^{*}$
"Not significant at the .05 level

Table 2 shows a comparison of post-test scores of the control group and the experimental group. There were 25 , 9 th grade basic mathematics students in the study. The control group consisted of 12 students and the experinentad group consisted of 13 students. The mean score for the control group after taking the posttest was 35.8. The mean score for the experimental group after taking the post-test was 36.3. A two-tailed t-test was administered and a t-score of 17 was obtained. This was not significant at the of level

TABLE 2
A Comparison of the Post-Test Scores of the Control Group and the Expentimental
Group.

POST TEST 5.D.
SCORE

Control Group	35.8	8.4113
$(\mathrm{n}=12)$		

$\substack{\text { Experimental Group } \\ (\mathrm{n}=13)}$	36.3	6.6506

t -score $=.17^{*}$
*Not significant at the .05 level.

As is evident in Tables 1 and 2, there is no significant difference in mean test scores between stadents who obtained computer assisted instruction (experimental group) to those who were admunistered the traditional classroom iastruction (control group).

CHAPTER 5

Summary, Conclusions, and Recommendations
Lntroduction
The foous of this study was to determine the effectiveness of computer assisted anstruction in the basic mathematics curriculum. The pre-test and post-test were tabulated and the data was analyzed. The findings were evaluated and conclusions were drawn

Summary of Findings

The data analysis was performed and a t-test was administered and it was found that there was no significant difference in the students who received computer assisted instruction to those who received the traditional method of instruction.

When reviewing Tables 1 and 2 , the control group showec a decrease in the mean scores from pre-test to post-test. While the mean scores of the experimental group stayed relatively the same from pre-test to post-test.

Conclusions.

It thad been stated in the research that was gathered for this study that when computer assisted instruction is used effectively in the classroom it showld benefit the students learning process. After evaluating the findings I conducted some research on the word "effectively". In Webster's New World Dictionary (3ta Ed, 1988) they define effectively as producing a definite or desired result.

While performing the 31 day study some problems that arouse were: computers breaking down, the networking of the system did not allow fer students to receive a computer printout of work and results, and the shortness of the study (31 days). These factors could have led to the "effectiveness" of the study.

Recommendations

In furure studies dealing with computer assisted instruction in the basic mathenatics curriculum, the following steps might be explored:

1. Expanding the study to more than 31 days. Which woutd allow for a more in depth study of this subject.
2. Using a computer lab which is open only for designated classes to come in at a certain scheduled time.
3. Having a computer techuician who is aveilable to handle problems with the equipment would be beneficial
4. Using computer software that allows students to obthin a promout of their work and results.
5. Using computer sollware that has connuter graphics. This would help in getting and maintaining students interest.
6. Having a techwology coordinator who takes care of purchasing math software packages that meet the ubeds thar the mathemntios teachers are seeking, making sure proper implementation is being used, and that the mathematios department staff is propenly trained.

APPENDLX A
PRE-TEST

DIRECTIONS: Work on ald problems. Record your answer choices for problem numbers $1-45$ on the scan-tron sheet Problem numbers 46 -50 are to be answered on the test paper.

1) $4,793 \cdot 1,749$
a. 6,542
b. 3,044
c. 3,224
d. 3,214
2) $74 \times 5,183$
a. 388,725
b. 430,162
c. 435,975
d. 383,542
3) $7.49+12.6+0.736$
a. 20.826
b. 88.236
c. 8.352
d. 20,826
4) $1,305.72 \div 27$
a. 4,836
b. 483.6
c. 48.36
d. 48.06
5) Let $a=3$ and $b=5$. Evoluate $14 a-2 b$
a. 64
b. 32
c. 22
4. 180
6) Express $4 \times 4 \times 4 \times 4 \pi 4$ in exponential form.
a. 5^{4}
b. 1024
c. 4^{5}
E. 4.5
7) Express $524,800 \mathrm{im}$ scientific notation
2. 5.248×10^{5}
b. 5.248×10^{-5}
c. $52.48 \times 10^{*}$
d. 5248×10^{2}
8) Extmas $8^{4} \times 8^{3}$ 组 exponcaiml form
4. 8
B. 8^{62}
c. B^{6}.
487
9) Exptess $x^{2} \div x^{5}$ a expontini forin
a. x^{13}
b. x^{3}
c. x^{40}
di. x^{45}
10) $2 \pi(10-6)+9=$
a. 23
b. 17
c. 26
d. 16
11) Dawt puss $\$ 8$ into her savings accoumt in Jume. $\$ 12$ in July, $\$ 16$ in August If Daum continles thes patterin, how much money will she pur into her axtount in December?
a. 34
b. $\$ 28$
c. $\$ 32$
d. 336
12) Express 5\%8 as a decimal.
a. 0.625
b. 1.6
c. 0.5
d. 5.8
13) The prime factorization of 340 is
a. 10×34
b. 1×340
c. $2^{3} \times 5^{2} x 17$
d. $2^{2} x 5 \times 17$
14) The GCF of 9 and 12 is
a 108
b. 36
c. 3
d 21
15) The LCM of 4 and 5 is
220
b. 1
e. 60
49
16) Express 0.65 is a fration in lowest temb-
2. $65 / 100$
b. 65%
c. $13 / 20$
[4 $3 / 5$
17) Compare 3 A___2/5
a
b. 3
c. $=$
18) Compare $1 / 3$ \qquad $0.0 \overline{3}$
2. $<$
b. $>$
c. $=$
3. Write $2.45 \cdot \pi \cdot 10^{-5}$ in stand and form
a 245,000
b. 24,500
c. 0.0000245
d. 0,000245
20) $1 / 3+4 / 7$
a. $5 / 10$
b. $1 / 2$
c. $5 / 21$
d 19/21
21) $51 / 5-25 / 8$
a. $213 / 24$
b. $7 \quad 19 / 24$
c. 3 11/24
4238

22） $45 / 2 \pi 2 / 3$
a． 7
b． 12
c． $81 / 3$
d． $71 / 6$

23） $7 / 12 \div 3 / 4$
a． $7 / 16$
b． $9 / 7$
c． $3 / 7$
d． $7 / 9$

24） 36 in $=$ \qquad ft
a． 2
b． 5
c． 3
d． 12

25）． $7 \mathrm{~B}=$ \qquad 02
a． 84
b． 56
c． 112
d 16

26） 58 皿 $=$ \qquad cm
a． 580
b． 5.8
c． 0.58
4． 5800

27） $872 \mathrm{mg}=$ \qquad g
a． 0.872
b． 8.72
c． 87.2
d 8720

28） 3 解 9 OL ＋8閑 802
a 12 lb 6 oz
b． $12 \mathrm{Ib} \quad 1 \mathrm{oz}$
c． 11 lb 1 oz
d． 11 bb 60 c

29）Express 0.00000531 in scientific notation．
a． 5.31×10^{6}
b． 53.1×10^{7}
c． $5.31 \times 10^{*}$
d． 5.31×10^{-6}

30）Simplify $4(5+a)$
a $20+4 a$ ．
b． $20+\mathrm{a}$ ．
c． $9+1$
d． 20π

31）$(3 \div 8)^{2} \times 4$
a． 88
b． 192
c． 484
d． 448

32）Order $2,-6,7,0,4$ from least to greatest
a．$-4,-6,0,2,7$
b．$-6,-4,0,2,7$
c． $7,2,0,-4,-6$
d． $7,2,0,-6,-4$

HEIGHT IN INCHES

60636670
$64 \quad 58 \quad 68 \quad 68$

Use the data in the table above for questions 33 and 34.
33) What is the median height?
4. 58 in
b. 65 in
c. 63.375 in
d. 63.5 in
34) What is the range in heights?
a. 12 in
b. 13 in
c. 58 in
d. 70 in
35) Compare $|-3|$ \qquad 121
a $>$
b, <
c. $=$
36) $-7+-6=$ \qquad
a -1
b. 1
c. -13
d 13
37) If the diameter of a circle is 25 m what is the radius?
a. 12.5 m
b. 12 m
c. 5 m
d. 5.5 m
38) $-3-(-9)=$ \qquad
a. 6
b. -11
c. -6
d. 11
39) $13 \cdot 18=$ \qquad
a -31
b. -5
c. 31
d. 5

40) About how many more innimgs did Young pitch thanRoberts?
a. 3,000
b. 2,000
c. 1,000
d. 3
41) : $\times-5$
a. 35
b. 2
c. -2
d. -35
42) Find the wode for $32,25,24,25,30,24,25$
a. 26.4
b. 24
d. 25
e. 24.5
43) $20 \div-5$
a. -4
b. 25
c. 4
4. -25

Use the data in the above groph for questions 44 and 45 .
44) What ir the difference in length between the largest whale and smallest whale7
4. ${ }^{3}$ teet
b. 70 feet
c. $\$ 0$ feet
4. 75 feet
45) About how many times greater in length is the finbach whale then the beluga whale?

b. 4 times
c. 3 times
d. 5 thmos

Sact 2 - HSPT Math 9
MidTom Exam
Name \qquad Date \qquad
DIRECTIONS: Solve questions $46-50$ and write the answer on the lime grovided.
46) Find the perimeter.

$$
\text { perimeter: }=\ldots
$$

47) Joe's test scores were: $92,85,95$, and 80 . Find the mean

Meara \qquad
48) Use the data in the table below. How many more biths were bere in 1987 than it 1990 ?

49) Sketch a graph on the axes below that shows the following situation.

The students in a school planted a tree on Arbor Day. The tree was 4 feet tall It grew 3 inches bhat summer. During the next winter, it didn't grow at all. The following summer it grew 5 inches. Graph the growth of the tree from the time it was planted to the end of the second summer.

50) Look at the Figure beilow. Fach cincle has a drameter twice the sipe of the sinaller circle. The diameter of the langest cinele is 36 miks. What is the diameter of the smallest circle?

Drameder = \qquad

APPENDDX B

POST TEST

Momer

Directions: Work on all problems. Record your answer choices for problem nuribers I-45 on the scantron sheet. Problemi pumbets $46-50$ are to be answered on the test paper

1) $4 x+7=23$
a. 4
b. 9
c. 10
d. 5
2) $3: 2=\mathrm{s} .50$
a 50
b. 15
e. 75
d. 100
3) $-9+4=$
a. 5
b. -13
c. 5
d. 13
4) The original amount was $\$ 535$ the new amount is $\$ 642$. What is the percent of increase
a. 17%
b. 20%
c. 0%
d. 50%
5) Wrire a symbol for
3. $\frac{\mathrm{CH}}{2}$
b. 4
4. ${ }^{2}$ F
d. AH^{3}
6) Two 3 ngets that add up to 180° are called
a. Complementary anyles b. Adjactult angles.
c. Verted Arimes
\$. Supplementary Anglem
7) Erpress 38\% as a deeimal
a 38
b. 0038
c. 0.38
d. 3800
8) A triangle has three angles. The measure of angle $1=53^{\circ}$, the measure of angle $2=93^{\circ}$ the measure of angle $3=$
a. 35°
b. $5^{\text {a }}$
c. B°
d. 128^{9}
9) At equilateral triangle can also be a right triangle
a. True
b. False
10) The width of a dining room floor in a scale draving is 7in. The actual widin is 35 ft What is the Scale of the Edor plan?
g. lin: 5t
b. 1 in 2 f
4. 7in 35 ft
d. 2 in: 1 白
11) The scale drawing is I inch: 5 ft . Find the drawing length that would be used to represent an accual length of 40 ft
a. 2 in
b. 8 in .
c. 120 in .
d. 6 in.
12) Express 0.7 as a percent.
a. 7%
b. 0.7%
c. 70%
d. 700%
13) I4 is what percent of 80 ?
a. 17%
b. 6%
c. 7.5%
d. 20%
14) 22% of 45 is
a. 990
b. 99
c. 9.9
d. 90
15) Last week a coat at Lacy's cost $\$ 200$. The week it is on sale for $\$ 175$. What is the percent of the decrease?
b. 12.5%
c. 0.125%
d. 25%
e. 50%
16) 364 is 7% of what number?
a. 52
b. 25.48
c. 254.8
d. 5200
17) A watch is on sale for 25% off of $\$ 149.9$. What isthe sale price?
a. 337.50
b. $\$ 37.49$
c. $\$ 112.49$
d. $\$ 112.50$
18) What percent of 140 is 28 :
a. 20%
b. 25%
c. 2%
d. 0.2% '
19) Rourd 0093 to the underlined place-value position
a 0.09
b 10
c. 01
d. 0.08
20) Etrimate 0.73×4

- 38
b. 2.8
c. 028
d. 4

21) Find the value of $5 \times(3 \div 4.2)-6.2$
a. 13.2
b. 30
c. 298
d. 30.2
22) Add $4.6+17+0.83$
a. 1.46
b. 21.33
c 146
c. 22.43
23) Sublract 0.568-0.393
a. 0.175
b. 21.33
c. 0.23
d. 22.43
24) What is the perimeter of a rectangular yard that is 24 feet wide and 36 feet long?
2. 60 ft
b. 144 ft
c. 96 ft
d. 120ft
25) Divide $43.6 \div 1000$
a. 0.0436
b. 0.436
c. 436,000
d. 43,6000
26) Find the area of the rectangle.
a $75 \mathrm{~cm}^{2}$
b. $18,5 \mathrm{~cm}^{2}$
c. $37 \mathrm{~cm}^{2}$
d. $72.5 \mathrm{~cm}^{2}$

27) Find the mean. Round to the nearest tenth $14,13,10,9,16$
3124
b. 12
c. 10.0
d. '12.5
28. Find a fraction equivalemt to $3 / 8$.
[i. $15 / 40$
b. $3 / 4$
e. $5 / 4$
d. $12 / 16$
29) Simply the faction $27 / 54$
a. $1 / 2$
b. $1 / 3$
c. $9 / 18$
d. $13 / 27$
30) Add. $131 / 2+72 / 3$
a. $22 \mathrm{l} / 2$
b. $201 / 6$
c. $211 / 3$
d. 21 1/6
31) Subtract $9-53 / 4$
a. $33 / 4$
b. $31 / 4$
c. $4 \mathrm{l} / 4$
d. $43 / 4$
32) Multiply $55 / 6 \times 24 / 5$
a. $172 / 5$
b. $42 / 3$
c. $31 / 2$
d. $161 / 3$
33) Divide $31 / 2 \div 3 / 4$
a. $51 / 2$
b. $42 / 3$
c. $25 / 8$
d. $12 / 3$
34) Change 0.35 to a fraction.
a. $1 / 3$
b. 1/35
c 7/20
d. $1 / 4$
35) Find an example of an obtuse angle.
A.

B.

C.

D.

36) Find the pair of lines that are parable
A.

B.

37) Which best classifies this triangle? a isosceles
b. equilateral
c. obtuse
d. right -

D.

38) Complimentary angles are two angles whose sum is \qquad
a. 180°
b. 90^{2}
c. 45°
d. 100°
39) Find the total cost of carpeting the rectangular rom if carpet $\$ 1650$ per square yard.

40) What percent of 16 is 4 ?
a. 25%
b. 100%
c. 4%
d. 50%
41) Solve the proportion $-\frac{2}{5}=\frac{7}{x}$
a $171 / 2$
b. $24 / 5$
c. $13 / 7$
d. 3
42) Find 35% wrinen as a fraction in simplest form.
a. $1 / 4$
b. 1/3
c. $5 / 7$
d. 7/20

Hi) Find 5 :
a. 5 क
b. 50 名

- $6 \geq 5 \%$
d. 62.5%

45) Find 9.34 writed as a decimal
a. 0.93
b. 0,093
c. 9.3
d. 0.0093

Yant - HSPT Math 9
Final Exam

* \qquad Date \qquad
DIRECTIONS: Solve quesions 4650 and write the answer on the lime provided.

46) A tlag pole is 15 feet 6 inches tall How matay uches of rope will you need to reach tron the brition of the pole to the top?

$$
\text { Answer }=
$$

\qquad
47) What is the area of tringle A.BD?

Answer = \qquad
48) Draw a picture of a pentagon.

Anctiti =

\qquad
49) the formula for area of a rectengle is $A=$ kw. Where $I=$ leagth aind $w=$ width At rectangle hars an tret of 336 carind a with of 14 cm . Foxd the leagta of this rectangle.

\qquad
50) - Find the tinkown

\qquad

APPENDDX C
 HSPT FOR SUCCESS
 COPYRIGHT 199]
 NVETRUTCTIVISION
 OPEN-ENDED QUESTION

OPEN-ENDED QUESTION

At West Ligh School, test grades are uniformornly scored using at 0 to 100 range. Tracy scones 90,78 , and 84 on her finst thee math tests. After taking a fouth test, what is the lowest possible average that Tracy can achieve?

What is the highest possible average she can achieve?
Explain how you found your answer.

EXPLANATION

If Tracy were to receive a zero on her fourth test her average would be

$$
\frac{90+78+84+0}{4}=63 \%
$$

If Tracy were to receive a hundred on her fouth terst her average would be

```
90+78+84+100
    4=88%
```


APPENDTX D

HSPT FOR SUCCESS

COPYRIGIT 1991

INSTRUCTIVISION

SKILL BUILDERS

IV. DATA ANALYSIS

Gina's Pizza is having a contest for free piza pies. From Monday through Friday customers are asked to fill in a coupon. On Friday, Gina will draw five coupons, and the winners will ench get a piza. The number oí customers entering on the five days is $17,19,23,15$, and 26 . If you entered the contest, what is the probatrity of winning a pizza?
(A) 5%
(B) 10%
(C) 20%
(D) 25%

V. ALGEBRA

Evaluate $3 a+1+5 B-6$ if $a=4$ and $b=3$
(A) 2
(B) 10
(C) 14
(D) 22

I. NUMERICAL OPERATIONS

$10 p \mathrm{is}$ between
(A) 20 and 30
(B) 30 and 40
(C) 40 and 50
(D) 50 and 60

II. PATTERNS

VIDEOVTTROVTDEO.

If this pattern is conthued, what symbol will be in the 90th position?
(A) V
(B) 1
(C) D
(D) F

Ш. GEOMETRY

Which of these is the meastre of ato obuse angle?
(A) 15 degrees
(B) 45 degrees
(C) 160 degrees
(D) 320 degrees

APPENDIXE

EWT SUCCESS

COPYRIGHT 1991

INSTRUCTIVISION SKHL BULEDERS

I. NUMERICAL OPERATTONS

Brian collects basebat cards. He keeps his collections in pages of plastic pockets in a looseleaf binder. He fits 24 cards on 3 pages. If he purchases 40 cards at a flea market, how many pages will be need to hold these new carils?
(A) 4
(B) 5
(C) 6
(D) 7

II MEASUREMENT AND GEOMETRY

A triangle contains two 45 degree angles. What is the measure of the third angle in the triangle.
(A) 180 degrees
(B) 135 degrees
(C) 90 degrees
(D) 45 degrees

III. PATTERNS AND FUNCTIONS

What digit is in the 16th decimal place of the decimal form of $2 / 3$?
(A) 2
(B) 3
(C) 5
(D) 6

IV. DATA ANALYSIS

Th the garne of BNWGO there are a total of 75 BNGO balde as follows: "B" balls numbered 1-15, "T" balk mumbered 16-30, "N" balls numbered 31-45, "G" balls numbered 46-60 and "O" balls numbered 61-75. When the cage is spun, the caller randomly selects the first ball. What is the probability that this ball will have the letter "B" on it?
(A) $5 / 75$
(B) $1 / 15$
(C) $5 / 15$
(D) $1 / 5$

V. PRE-ALGEBRA

The equation $4 a+2=50$ represents correctly which idea expressed in the following sentences?
(A) 4 more than 2 times a mumber is 50
(B) 4 times 2 less than a number is 50
(C) 2 less than 4 times a number is 50
(D) 2 more than 4 times a number is 50

Endnotes

$1_{\text {Dorothy }}$ Varygiannes, "Mathematics_Instnction Guide: Linking Classroom Experiences to CurrentStatewide Assessments" (New Jersey State Deparimen of Education, Jamuary 1996) E-1.
${ }^{2}$ Thomas Tochs "Wired for Learning." U.S. News and World Report, 28 October 1991: 76-79.

3"Geatime Tenchers Up to Speed on the Infomation Superhigleway," National Comncil of Tenciners of Mathematics.News Bulletin, July/August 1996, p. 1

4"Standard 4.5;"New Jersey Core Curiculuan Content Stardadde tor Mathematics, pp.4-18.
${ }^{5}$ Thomas J. Kerr, "Computers in Schools: The Classroom Corneback" Schoos and Gollege, September 1990, p. 17.
${ }^{6}$ Kerr et. al., 17.
${ }^{7}$ Ken el, al., 18.
$8_{\text {Sack Pice, "Helping Parents Understand Change." Nativnal Louncil of Teachers }}$ of Mathematics Mews Bulletin, March 1996. p. 3.
${ }^{9}$ Altan Colins, "The Role of Computer Technology in Restructing Schools." Phi Delta Kappan, September 1991 p. 28 .
${ }^{10}$ Kerr et. al., 21
${ }^{11}$ Hemy J. Baker, "Mathematics and Science Uses of Computers in American Schools, " Joumal of Computers in Mathematics and Science Teaching. Summer 991 , pp. 10-25.
${ }^{12}$ Baker et. al., 20.
${ }^{13}$ Marcia A. Thompson, "Eighth-Grade Achievement Results Announced for Internationsl Math Study," National Council of Teachers of Marhereatics News Bulietin. December [996, p. I.
${ }^{14}$ Tom Morgan, "Using Technology to Enhanve Learning: Changing the Chunks," Leataidg and Leadng with Technalogy, February 1996, pp. 49-51.
${ }^{15}$ R. L. Klatzky (1980), Human Memory_Structuras and Pracess, San Francisco: W. H. Freemar
${ }^{1}{ }^{\text {Bloom B.S. (ed.), (1956), Taxonomy of Educational Objective: Handbook I }}$ Cogritive Domain, New York: David McKay.
${ }^{17}$ Bloom et. al.
${ }^{18}$ Dave Wuans, "Techno Hype-or Help?" National_Education Association, November 1996, pp. 4-5.
${ }^{19}$ Winans et. al., 4.
${ }^{20}$ Winans et. al., 5 .

Bibliogaphy

Baker, Henry J. "mathematics and Science Uses of Computers in American Schools." Joumal of Computers in Mathematics and Science Technolgy (Summer 1991): 19-25

Bloom B S Taxononomy of Educational Objective: Handbook I. Cognitive Domain New York: David McKay (1956).

Collins, Allan. "The Role of Computer Tectnology in Restructing Schools." Phi Delta Kappan (September 1991): 28.
"Getting Teachers Up to Speed on the Information Superhighway" NCTM-Balletin (July/August 1996).

Kerr, Thomas J. "Computers in Schools: The Classroom Combacic." School and College (September 1990).

Klatzky, R. L. Human Memory: Structures and Process (1980).
Morgan, Tona. "Using Technology to Enhance Learring Changing the Chunks." Learning and Leading with_Technology (February 1996): 49-51
"New Jersey Core Curriculum Content Standards for Mathematies."
Price, Jack. "Helping Parents Understand Change." NCTM Bulletin (March, 1996).
Thompson, Marcia A. "Eighth-Grade Achievement Results Announced for International Math Study." NCTM Bulletin (December 1996): 1.
Toch, Thomas. "Wired for Learning." US.News and World Reppoct, 28 October 1991: 76-79.

Winans, Dave "Techo Hype-or-Help?" NEA November 1996): 4.

Varygiannes, Dorothy "Marhematiss Instnuction Guide: Linking Classroom Expeniences to Current Statewide Assessments." Wew Iersey State Department of Education (January 1996) E-1.

